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ABSTRACT. Biodiversity provides insurance against the
uncertain provision of ecosystem services which are being
used by risk-averse economic agents. I present a conceptual
ecological-economic model that combines (i) current results
from ecology about the relationships between biodiversity,
ecosystem functioning, and the provision of ecosystem services
with (ii) economic methods to study decision-making under
uncertainty. In this framework I (1) determine the insurance
value of biodiversity, (2) study the optimal allocation of funds
in the trade-off between investing into biodiversity protection
and the purchase of financial insurance, and (3) analyze the
effect of different institutional regimes in the market for fi-
nancial insurance on biodiversity protection. I conclude that
biodiversity acts as a form of natural insurance for risk-averse
ecosystem managers against the over- or under-provision with
ecosystem services. Therefore, biodiversity has an insurance
value, which is a value component in addition to the usual
value arguments, such as direct or indirect use or non-use val-
ues. In this respect, biodiversity and financial insurance are
substitutes. Hence, the availability, and exact institutional de-
sign, of financial insurance influence the level of biodiversity
protection.

KEY WORDS: Biodiversity, ecosystem functioning, ecosys-
tem services, insurance, risk aversion, uncertainty.

1. Introduction. In the face of uncertainty, diversity provides
insurance for risk averse economic agents. For example, investors
in financial markets diversify their asset portfolio in order to hedge
their risk; firms diversify their activities, products or services when
facing an uncertain market environment; farmers traditionally grow a
variety of crops in order to decrease the adverse impact of uncertain
environmental and market conditions. In this paper, I argue that
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biological diversity plays a similar role: it can be interpreted as an
insurance against the uncertain provision of ecosystem services, such
as biomass production, control of water run-off, pollination, control
of pests and diseases, nitrogen fixation, soil regeneration, etc. Such
ecosystem services are generated by ecosystems and are used by utility-
maximizing and risk averse economic agents (Daily [1997], Millennium
Ecosystem Assessment [2005]).

In order to explore the hypothesis that biodiversity has an insurance
value in the provision of ecosystem services, I take an interdisciplinary
approach and study a conceptual ecological-economic model that com-
bines (i) current results from ecology about the relationships between
biodiversity, ecosystem functioning, and the provision of ecosystem
services with (ii) economic methods to study decision-making of risk
averse agents under uncertainty. The focus here is on how to model
the ecology-economy-interface. Relevant economic and policy questions
that arise from this view on biodiversity are only briefly sketched and
are discussed in more detail elsewhere (Baumgärtner and Quaas [2005],
Quaas and Baumgärtner [2005], Quaas et al. [2004]).

Although ecologists usually stress the large extent of ignorance about
the detailed mechanisms of ecosystem functioning, e.g., Holling et al.
[1995], Loreau et al. [2001], Schulze and Mooney [1993], there now
seems to be a consensus about some of the basic mechanisms through
which biodiversity influences ecosystem functioning and the provision
of ecosystem services (Hooper et al. [2005], Kinzig et al. [2002], Loreau
et al. [2001, 2002b]). Among other insights, it has become clear that
biodiversity may decrease the variability of these services. This result
has led economists to suggest that biodiversity may be seen as a form
of insurance, for instance in agriculture or medicine (Perrings [1995],
Schläpfer et al. [2002], Swanson and Goeschl [2003], Weitzman [2000]).
On the other hand, availability of financial insurance against the over-
or under-provision with ecosystem services, or other financial products
that allow the hedging of income risk, may be seen as substitutes
for the natural insurance provided by biodiversity (Baumgärtner and
Quaas [2005], Ehrlich and Becker [1972]). The implications of this idea
for both economic well-being and the state of ecosystems in terms of
biodiversity, however, have hardly been explored so far.

One notable exception is to be found in the field of agricultural
economics. A number of studies have analyzed the contribution of
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crop diversity to the mean and variance of agricultural yields (Smale et
al. [1998], Schläpfer et al. [2002], Widawsky and Rozelle [1998], Zhu et
al. [2000]) and to the mean and variance of farm income (Di Falco and
Perrings [2003, 2005], Di Falco et al. [2005]). It has been conjectured
that risk averse farmers use crop diversity in order to hedge their income
risk (Birol et al. [2005a, 2005b], Di Falco and Perrings [2003]) and that
this may be affected by agricultural policies such as subsidized crop
yield insurance or direct financial assistance (Di Falco and Perrings
[2005]).1

With this analysis, I want to look into these issues in greater gen-
erality and with a particular focus on modeling the ecology-economy
interface. In order to study the role of biodiversity as a form of natu-
ral insurance, I employ a conceptual model that captures the relevant
ecological and economic relationships in a stylized way. While such
a simple model cannot offer any quantitative predictions or detailed
policy prescriptions, it can clarify the underlying theoretical structure
of the problem: The ecosystem generates a valuable ecosystem service
at a level that is uncertain because of environmental stochasticity. Its
probability distribution is influenced by the level of biodiversity, which
is measured by a suitable index. In line with evidence from ecology, I
posit a monotonically increasing and concave relationship between bio-
diversity and the mean absolute level of the ecosystem service provided
by the ecosystem, and a monotonically decreasing and convex rela-
tionship between biodiversity and the variance of ecosystem service.
The ecosystem service is being used by an ecosystem manager, say, a
farmer, who is assumed to be a risk averse expected utility maximizer.
Protection of biodiversity is costly. There exists a financial form of
insurance against over- or under-provision with the ecosystem service.
The ecosystem manager decides upon (i) the level of biodiversity and
(ii) the level of financial insurance coverage.

In this framework, I analyze the optimal allocation of biodiversity as
a choice of endogenous environmental risk in mean-variance space.2 In
particular, I

• determine the insurance value of biodiversity, i.e., the marginal
value of biodiversity in its function to reduce the risk premium of the
ecosystem manager’s income risk from using ecosystem services under
uncertainty,
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• study the optimal allocation of funds in the trade-off between
investing into natural capital, that is, biodiversity protection, and the
purchase of financial insurance, and

• analyze the effect of different institutional regimes in the market for
financial insurance (e.g., availability, transaction costs and profitability
of financial insurance) on biodiversity protection.

I conclude that biodiversity acts as a form of natural insurance for
risk averse ecosystem managers against the over- or under-provision
with ecosystem services. Therefore, biodiversity has an insurance value,
which is a value component in addition to the usual value arguments
(such as direct or indirect use or non-use values, or existence values)
which hold in a world of certainty. In this respect, biodiversity and
financial insurance are substitutes. Hence, the availability, and the
exact institutional design, of financial insurance, influence the level of
biodiversity protection.

The paper is organized as follows. Section 2 discusses the ecological
background and surveys the relevant literature. Section 3 introduces
a formal ecological-economic model. The model analysis and results
are presented in Section 4, with all formal derivations and proofs given
in the Appendix. Section 5 critically discusses the limitations and the
generality of the results, and Section 6 concludes.

2. Ecological background: Biodiversity and the provision
of ecosystem services. Over the past 15 years, there has been in-
tensive research in ecology on the role of biodiversity for ecosystem
functioning and the provision of ecosystem services. Biodiversity has
been defined as ‘the variability among living organisms from all sources
. . . and the ecological complexes of which they are part’ (CBD [1992]),
which encompasses a wide spectrum of biotic scales, from genetic varia-
tion within species to biome distribution on the planet (Gaston [1996],
Purvis and Hector [2000], Wilson [1992]). Biodiversity can be described
in terms of numbers of entities, (e.g., genotypes, species, or ecosystems),
the evenness of their distribution, the differences in their functional
traits, and their interactions. The simplest measure of biodiversity at,
say, the species level is therefore simply the number of different species
(‘species richness’). Much of ecological research has relied on this
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measure when quantifying ‘biodiversity,’ although more encompassing
information has also been employed.3

Research on the role of biodiversity for ecosystem functioning and
the provision of ecosystem services built on (i) observations of existing
ecosystems, (ii) controlled experiments both in the laboratory and in
the field (‘pots and plots’) and (iii) theory and model analysis. While
the discussion of results has been, at times, heated and controversial,
there now seems to be a consensus over some of the basic results
from this research (Hooper et al. [2005], Kinzig et al. [2002], Loreau
et al. [2001, 2002b]).4 Among other insights two ‘stylized facts’ about
biodiversity and ecosystem functioning emerged which are of crucial
importance for the issue studied here:

1. Biodiversity may enhance ecosystem productivity. In many in-
stances, an increase in the level of biodiversity monotonically increases
the mean absolute level at which certain ecosystem services, e.g.,
biomass production or nutrient retention, are provided. This effect
decreases in magnitude with the level of biodiversity.

2. Biodiversity may enhance ecosystem stability. In many instances,
an increase in the level of biodiversity monotonically decreases the
temporal variability of the level at which these ecosystem services
are provided under changing environmental conditions. This effect
decreases in magnitude with the level of biodiversity.

These two stylized facts are now discussed in turn.5

2.1 Biodiversity may enhance ecosystem productivity. The absolute
level of a certain ecosystem service, e.g., biomass production, carbon
sequestration or nitrogen fixation, may be influenced by species or
functional diversity in several ways.6 Indeed, more than 50 potential
response patterns have been proposed (Loreau [1998a], Naeem [2002]).
There are two primary mechanisms through which biodiversity may
increase the mean absolute level at which certain ecosystem services
are provided, Figure 1:

(i) Only one or a few species might have a large effect on any
given ecosystem service. Increasing species richness, i.e., the number of
different species, increases the likelihood that those key species would
be present in the system (Aarssen [1997], Huston [1997], Loreau [2000],
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Tilman et al. [1997b]). This is known as the ‘sampling effect’ or the
‘selection probability effect’, Figure 1A.7

(ii) Species or functional richness could increase the level of ecosys-
tem services through complementarity, i.e., species use different re-
sources, or the same resources but at different times or different points
in space and facilitation, i.e., positive interactions among species so
that, e.g., certain species alleviate harsh environmental conditions or
provide a critical resource for other species. Both complementarity
and facilitation lead to an ‘overyielding effect,’ Figure 1B, in which
biomass production in mixtures exceeds expectations based on mono-
culture yields (Ewel [1986], Harper [1977], Hector et al. [1999], Loreau
[1998b], Trenbath [1974], Vandermeer [1989]).

Complementarity, facilitation and sampling effects will all lead to a
saturating average impact of species richness on the level of some
ecosystem service, Figure 1A, B.

FIGURE 1. Ecological theory has suggested two basic mechanisms of how
biodiversity could increase the mean absolute level of ecosystem services:
sampling or selection probability effect (A), and complementarity or facilitation
(B). Points show individual treatments, and lines show the average response.
(Figures are taken from Tilman [1997], as compiled by Hooper et al. [2005].)

Experiments have confirmed the important role of these two primary
mechanisms through which biodiversity may increase the mean abso-
lute level of certain ecosystem services. This holds, in particular, for
experiments with herbaceous plants, in which average primary pro-
duction and nutrient retention were found to increase with increasing
plant species or functional richness, at least within the range of species
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richness tested and over the relatively short duration of the experi-
ments (Fridley [2003], Hector et al. [1999], Loreau and Hector [2001],
Niklaus et al. [2001], Reich et al. [2001], Tilman et al. [1996, 1997a,
2001, 2002]).8 In these experiments, the responses to changing diver-
sity are strongest at low levels of species richness and generally saturate
at 5 10 species. It has also become evident that complementarity, fa-
cilitation and sampling/selection effects are all relevant and can be
observed in experiments.9 They are not necessarily mutually exclu-
sive, but they may be simultaneously or sequentially at work in one
system. The strength of species complementarity and interspecific fa-
cilitation and, thus, the quantitative response in the level of ecosystem
services to changes in species richness varies with both the functional
characteristics of the species involved and the biotic as well as abiotic
environmental context.

These general findings need to be qualified in a number of respects:

• Experiments have shown that the exact response of ecosystem
services on changes in biodiversity is determined at least as much by
differences in species composition, i.e., which species and functional
traits are lost and remain behind, as by species richness, i.e., how many
species are lost.

• Patterns of response to experimental manipulation of species rich-
ness vary for different ecosystem processes and services, different
ecosystems, and even different compartments within ecosystems.

• Varying multitrophic diversity and composition, i.e., the diversity
and composition of an ecological community at more than one trophic
level, can lead to more idiosyncratic behavior than varying diversity of
primary producers alone.

The different patterns found under experimental conditions may or
may not reflect actual patterns seen for a particular ecosystem under
a particular scenario of species loss or invasion, which will depend
not only on the functional traits of the species involved, but also on
the exact pattern of environmental change and the species traits that
determine how species respond to changes in environmental conditions
(Lavorel and Garnier [2002], Schläpfer et al. [2005], Symstad and
Tilman [2001]).
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2.2 Biodiversity may enhance ecosystem stability. The debate about
whether (or not) biodiversity enhances ecosystem stability, i.e., whether
(or not) ecosystem properties are more stable in response to environ-
mental fluctuations as diversity increases, has a long tradition in ecol-
ogy (McCann [2000]). This so-called ‘diversity-stability-debate’ has
been initiated in the 1950s by observations from natural ecosystems
which were found to be more productive and more stable when more
diverse (Elton [1958], Odum [1953], MacArthur [1955]). This early
diversity-stability hypothesis has been shaken in the early 1970s by
computer simulations of ecosystems which demonstrated that these sys-
tems were more unstable when more diverse (May [1972, 1974]). How-
ever, because the simulated model systems were randomly and purely
fictional, the diversity-stability-question for real ecosystems remained
open.10 In the 1990s, the debate gained new momentum and research
was organized and discussed more systematically, with results coming
from controlled laboratory experiments, field studies and theoretical
analysis.

The diversity-stability debate is generally clouded by inconsistent ter-
minology, as ‘stability’ is an umbrella term that denotes a large number
of potential phenomena, including, but not limited to, resistance to dis-
turbance, resilience to disturbance, temporal variability in response to
fluctuating abiotic conditions, and spatial variability in response to dif-
ferences in either abiotic conditions or the biotic community (Chesson
[2000], Chesson et al. [2002], Cottingham et al. [2001], Grimm and Wis-
sel [1997], Holling [1986], Lehmann and Tilman [2000], Loreau et al.
[2002a], May [1974], McNaughton [1993], Peterson et al. [1998], Pimm
[1984]). Most research so far has focused on temporal variability, but
some of the results may also apply to other measures of ecosystem
stability.

Theory, both via simple ecological reasoning and via mathematical
models, has led to the understanding that a diversity of species with
different sensitivities to a suite of environmental conditions should lead
to greater stability of ecosystem properties. The basic idea is that,
with increasing number of functionally different species, the probability
increases that some of these species can react in a functionally differ-
entiated manner to external disturbance of the system and changing
environmental conditions. In addition, the probability increases that
some species are functionally redundant, such that one species can take
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over the role of another species when the latter goes extinct. This is
what ecologists have been calling an ‘insurance effect’ of biodiversity in
carrying out ecological processes (Borrvall et al. [2000], Elton [1958],
Chapin and Shaver [1985], Hooper et al. [2002], Lawton and Brown
[1993], MacArthur [1955], Naeem [1998], Naeem and Li [1997], Petchey
et al. [1999], Trenbath 1999, Walker [1992], Walker et al. [1999], Yachi
and Loreau [1999]).11 With this logic, processes that are carried out by
a relatively small number of species are hypothesized to be most sensi-
tive to changes in diversity (Hooper et al. [1995]). Also, the number of
species or functional traits necessary to maintain ecosystem processes
under changing environmental conditions increases with spatial and
temporal scales (Casperson and Pacala [2001], Chesson et al. [2002],
Field [1995], Pacala and Deutschman [1995]).

Several mathematical models generally support these hypotheses
(see McCann [2000], Cottingham et al. [2001], Loreau et al. [2002a]
for reviews) and highlight the role of statistical averaging, the so-
called ‘portfolio effect,’ for the result (Doak et al. [1998], Tilman et
al. [1998]): if species abundances are negatively correlated or vary
randomly and independently from one another, then overall ecosystem
properties are likely to vary less in more diverse communities than
in species-poor communities.12 The strength of the modeled effects
of diversity depends on many parameters, including the degree of
correlation among different species’ responses (Chesson et al. [2002],
Doak et al. [1998], Lehman and Tilman [2000], Tilman [1999], Tilman
et al. [1998], Yachi and Loreau [1999]), the evenness of distribution
among species’ abundances (Doak et al. [1998]), and the extent to which
the variability in abundances scales with the mean (Cottingham et al.
[2001], Tilman [1999], Yachi and Loreau [1999]).13

While theory is well developed and predicts that increased diversity
will lead to lower variability of ecosystem properties under those condi-
tions in which species respond in a differentiated manner to variations
in environmental conditions, it cannot tell us how important the under-
lying basic mechanisms are in the real world or whether they saturate
at high or low levels of species richness. This requires experimental
investigations. However, controlled experiments are very difficult to
carry out, because one needs to make sure that the effect of species
diversity is not confounded by other variables, such as, e.g., soil fer-
tility or disturbance regime. Nevertheless, considerable evidence exists



96 S. BAUMGÄRTNER

from field studies in a variety of ecosystems that in diverse communi-
ties, redundancy of functional traits and compensation among species
can buffer ecosystem processes in response to changing conditions and
species loss. Examples include studies of arctic tundra (Chapin and
Shaver [1985]), Minnesota grasslands (Tilman [1996, 1999], Tilman et
al. [2002]), deserts (Ernest and Brown [2001]), lakes (Frost et al. [1995],
Schindler et al. [1986]), and soil ecosystems (de Ruiter et al. [2002],
Griffiths et al. [2000], Ingham et al. [1985], Liiri et al. [2002]). As an
example, Figure 2 shows experimental results for aboveground plant
biomass production in response to climatic variability in a Minnesota
grassland, Figure 2A, and net ecosystem CO2 flux in a microbial mi-
crocosm, Figure 2B. While the overall stability patterns found are as
predicted from theory, the experiments so far give little insights about
the underlying basic mechanisms. Also, mechanisms other than com-
pensation among species can affect stability in response to changing
species richness.

Several experiments that manipulate diversity in the field and in
microcosms generally support theoretical predictions that increasing
species richness increases stability of ecosystem properties. For in-
stance, stability of plant production, as measured by resistance and/or
resilience to nutrient additions, drought and grazing, increased with
the Shannon-Wiener index of diversity14 in a variety of successional

FIGURE 2. Ecological experiments found that species richness may decrease
the variability of ecosystem services, such as, e.g., aboveground plant biomass
production in response to climatic variability in a Minnesota grassland (A), or
net ecosystem CO2 flux in a microbial microcosm (B). (Figures are taken from
Tilman [1999] [A] and McGrady-Steed et al. [1997] [B], as compiled by Hooper
et al. [2005] and Loreau et al. [2001].)
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and herbivore-dominated grasslands (McNaughton [1977, 1985, 1993]).
And in Minnesota grasslands, resistance to loss of plant productivity to
drought increased with increasing plant species richness (Tilman and
Downing [1994]). However, results of these experiments may be con-
founded by a variety of variables other than species richness or diver-
sity, which has raised considerable controversy over the interpretation
of these results (e.g., Givnish [1994], Grime [1997], Grime et al. [2000],
Huston [1997], Huston et al. [2000], Pfisterer and Schmid [2002]). Ex-
periments in microcosms and grasslands suggest that increased species
richness, either in terms of numbers of different functional groups, or
numbers of species within trophic functional groups, can lead to de-
creased temporal variability in ecosystem properties (Emmerson et al.
[2001], McGrady-Steed et al. [1997], Naeem and Li [1997], Petchey et
al. [1999], Pfisterer et al. [2004]; but see also Pfisterer and Schmid
[2002]). But while species richness or the Shannon-Wiener index of
species diversity was statistically significant in all these experiments,
species composition (where investigated) had an at least equally strong
effect on stability.

In sum, the experimental work provides qualified support for the
hypothesis that species richness can increase the stability of ecosystem
processes and services, although the underlying mechanisms can differ
from theoretical predictions and in many cases still need to be fully
resolved (Loreau et al. [2001]).

3. Ecological-economic model. In order to study the economic
implications of the insights from ecology about how biodiversity affects
ecosystem functioning and the provision of ecosystem services, I shall
cast them into a simple and stylized ecological-economic model.

3.1 Biodiversity and the provision of ecosystem services. For nota-
tional simplicity, consider only one ecosystem service and let s be the
amount generated of that service. As an example, think of insects
providing pollination service to an orchard farmer. Because of envi-
ronmental stochasticity the level s, at which the ecosystem service is
provided, is a random variable. Assume, for analytical simplicity (and
lack of specific ecological evidence on this point), that s is normally
distributed with mean μs and standard deviation σs.
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As discussed in the previous section, ecological research provides
evidence that the level of biodiversity affects the statistical distribution
of the ecosystem service. Let v ∈ [0,∞] be an appropriate index of
biodiversity.15 The two stylized facts about the relationship between
biodiversity and the provision of ecosystem services, which emerged
from ecological research (cf. Section 2), can then formally be expressed
as:

μs = μs(v) with μ′
s(v) > 0, μ′′

s (v) ≤ 0,(1)
σs = σs(v) with σ′

s(v) < 0, σ′′
s (v) ≥ 0,(2)

where the prime denotes a derivative. That is, the mean level of
ecosystem service increases and the standard deviation decreases with
the level of biodiversity. Both effects decrease in magnitude with the
level of biodiversity. While biodiversity, thus, is beneficial in a twofold
manner by increasing the mean level, at which the ecosystem service is
being provided, and by decreasing its standard deviation its provision
is costly. Assume that the (direct and opportunity) costs of biodiversity
are given by a cost function

(3) C(v) with C ′(v) > 0, C ′′(v) ≥ 0.

In the example of an orchard farmer using insects’ pollination services,
the costs of biodiversity could result from setting aside land from
agricultural cultivation and leaving it in a natural state, so that hedges
and wetlands can provide habitat for insects.16

3.2 Ecosystem manager. The ecosystem manager, who manages the
system for the services s it provides, chooses the level of biodiversity
v ∈ [0,∞].17 On the one hand, the choice of v implies costs as given by
equation (3). On the other hand, biodiversity is essential for ecosystem
functioning and the provision of ecosystem services. The ecosystem
manager has benefits from ecosystem services, B(s). For simplicity,
assume that:

(4) B(s) = s.

Since ecosystem services s are a random variable (normally distributed
with mean μs and standard deviation σs) and the level of biodiversity v
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determines the distribution of this random variable according to (1) and
(2), the benefits are also a random variable normally distributed with
mean μs(v) and standard deviation σs(v). The ecosystem manager’s
net income y is then given by

(5) y = B(s) − C(v) = s − C(v),

which is a random variable normally distributed with mean μy and
standard deviation σy:

μy(v) = μs(v) − C(v)(6)

and

σy(v) = σs(v).(7)

Hence, by choosing the level of biodiversity v, the ecosystem manager
chooses a particular (normal) distribution N(μy(v), σy(v)) of net in-
come. That is, he chooses a particular income ‘lottery’ (Crocker and
Shogren [2001]).

The ecosystem manager’s preferences over his uncertain net income
y are represented by a von Neumann-Morgenstern expected utility
function

(8) U = E [u(y)],

where E is the expectancy operator and u(y) is a Bernoulli utility
function which is assumed to be increasing (u′ > 0) and strictly concave
(u′′ < 0), i.e., the ecosystem manager is non-satiated and risk averse.18

In order to obtain simple closed-form solutions, assume that u(y) is the
constant absolute risk aversion Bernoulli utility function

(9) u(y) = − e−ρ y,

where ρ > 0 is a parameter describing the ecosystem manager’s
Arrow-Pratt measure of risk aversion (Arrow 1965, Pratt [1964]).
The ecosystem manager’s von Neumann-Morgenstern expected utility
function (8) is then given by, see Appendix A.1,

(10) U = μy − ρ

2
σ2

y,
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which is the simplest expected utility function of the mean-variance
type.

3.3 Financial insurance. In order to analyze the influence of availabil-
ity of financial insurance products on the ecosystem manager’s choice
of biodiversity, in subsection 4.4, financial insurance is introduced in
a simple and stylized way.19 I assume that the manager does or does
not have the option of buying financial insurance under the following
contract:

• The insurant chooses the fraction a ∈ [0, 1] of insurance coverage.

• He receives (pays)

(11) a (s − μs)

from (to) the insurance company as an actuarially fair indemnification
benefit (risk premium) if his realized income is below (above) the mean
income.20

• In addition, he pays a mark-up for the transaction costs of insurance
and the insurance company’s profit:

(12)
δ

2
a2 σ2

s ,

where δ ≥ 0 is a parameter describing how actuarially unfair is the
insurance contract. Thus, the costs of insurance over and above the
actuarially fair risk premium, which are a measure of the ‘real’ costs
of insurance to the insurant,21 are assumed to follow a quadratic cost
function.

This is a highly idealized form of financial insurance which captures
in the most simple way the essence of financial insurance with an
actuarially fair risk premium and some mark-up (due to transaction
costs and profits) on top. The higher the insurance coverage a, the
lower the effective income risk; and the effective income risk can be
continuously reduced down to zero by increasing a to one. This follows
the ‘Venetian Merchant’ model of insurance: there exists an insurance
company (the ‘Venetian Merchant’) which is ready to (fully or partially)
take over the income risk from the insurant. In order to abstract from
any problems related to informational asymmetry I assume that the
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statistical distribution N(μs, σs) and actual level s of ecosystem service
are observable to both insurant and insurance company.

4. Analysis and results. When analyzing the insurance value
of biodiversity, subsection 4.2, the optimal allocation of biodiversity,
subsection 4.3, and the effect of different institutional settings in the
market for financial insurance products on biodiversity protection,
subsection 4.4, the idea is to treat the level of biodiversity v as the
choice variable and to analyze the choice of biodiversity as the choice
of an income lottery.

4.1 The choice set. To start with, neglect the option to buy financial
insurance and focus on biodiversity as the natural insurance. Financial
insurance will be taken into account in subsection 4.4. As v can range
from zero to infinity, the resulting feasible and efficient distributions
of net income y, equation (5), in μy-σy space can be depicted by an
income-possibility frontier as in Figure 3. Income distributions above
the income-possibility-frontier are not feasible; income distributions
below the income-possibility-frontier may be feasible, but are not
efficient.

The right-hand end of the curve corresponds to very low levels of bio-
diversity v: the standard deviation σy of income is high. As v increases,
one moves left along the curve: the standard deviation of income is re-
duced due to the stabilizing effect of biodiversity, equations (2) and (7)
and the mean income increases, because the mean level of ecosystem
service increases with biodiversity while the costs of biodiversity are
not too important at low levels of biodiversity, equations (1), (3) and
(6). As the level v of biodiversity increases further, i.e., moving left
along the curve even further, the additional mean benefits from addi-
tional ecosystem service become smaller and smaller, equation (1) while
the additional costs of biodiversity become greater and greater, equa-
tion (3), thus eventually causing additional mean net benefits y from
biodiversity to become negative. This corresponds to the left-hand end
of the curve: as biodiversity v increases, i.e., moving left along the
curve, the standard deviation σy of income still decreases while the
mean income μy decreases. Overall, the income possibility frontier in
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FIGURE 3. Feasible and efficient distributions of net income y, equation (5), in
μy-σy space are represented by the income possibility frontier (solid line). The
vertical line separates the domain with a trade-off between mean and standard
deviation of income (left) from the domain without such a trade-off (right).

μy-σy space has two parts: in the left-hand part (corresponding to high
levels v of biodiversity) the mean income μy increases with increasing
standard deviation σy; in the right-hand part (corresponding to low
levels v of biodiversity) the mean income μy decreases with increasing
standard deviation σy. Given the ecosystem manager’s expected utility
function (10), according to which a high mean income and a low stan-
dard deviation of income are desirable, this means that for low levels of
biodiversity there does not exist any economic problem. For, increasing
the level of biodiversity at low v (right-hand part of the curve) has a
double desirable effect: it increases the mean income and it reduces the
standard deviation of income. In contrast, for high levels of biodiversity
(left-hand part of the curve) when (opportunity) costs of biodiversity
become important, the ecosystem manager faces a trade-off: increasing
the level of biodiversity reduces the standard deviation of income, but
reduces mean income, too.

It is the left part of the curve which suggests the interpretation that
biodiversity provides insurance. As with buying financial insurance,
increasing the level of biodiversity reduces the standard deviation of
income but reduces mean income, too. In this domain, a choice has to
be made in order to optimally balance the two opposing goals of a high
mean income and a low standard deviation of income.
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4.2 The insurance value of biodiversity. In order to precisely define
the insurance value of biodiversity, let me come back to the idea that
the ecosystem can be seen as an infinite set of lotteries (Crocker and
Shogren [2001]). By choosing the level of biodiversity v, the ecosys-
tem manager determines the distribution N(μs(v), σs(v)) of ecosystem
service, equations (1) and (2), which then determines the distribution
N(μy(v), σy(v)) of income, equations (6) and (7). Thus, by choosing
the level of biodiversity v, he chooses a particular income lottery. In
the model employed here, this lottery is uniquely characterized by the
level of biodiversity v. Therefore, one may speak of ‘the lottery v.’

One standard method of how to value the riskiness of a lottery to a
decision maker is to calculate the risk premium R of the lottery, which
is defined by (e.g., Kreps [1990], Varian [1992, p. 181])22

(13) u (E [y] − R) = E [u(y)] .

The risk premium R is the amount of money that leaves a decision
maker equally well-off, in terms of utility, between the two situations of
(1) receiving for sure the expected pay-off from the lottery E [y] minus
the risk premium R, and (2) playing the risky lottery with random
pay-off y.23 In general, if the utility function u characterizes a risk
averse (risk neutral, risk loving) decision maker, the risk premium R is
positive (zero, negative).

In the model employed here, the risk premium of the lottery v depends
on the level of biodiversity and is given by, see Appendix A.2,

(14) R(v) =
ρ

2
σ2

s(v).

The insurance value of biodiversity can now be defined based on the
risk premium of the lottery v (Baumgärtner and Quaas [2005]).

Definition 1. The insurance value V of biodiversity v is given by
the change of the risk premium R of the lottery v due to a marginal
change in the level of biodiversity v:

(15) V (v) := −R′(v).

Thus, the insurance value of biodiversity is the marginal value of
biodiversity in its function to reduce the risk premium of the ecosystem
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FIGURE 4. The insurance value V of biodiversity, equation (16), as a function
of existent biodiversity v.

manager’s income risk from using ecosystem services under uncertainty.
Being a marginal value, it depends on the existing level of biodiversity
v. The minus sign in the defining equation (15) serves to express
biodiversity’s ability to reduce the risk premium of the lottery v as
a positive value. Applying Definition 1 to equation (14), one obtains
the following result for the insurance value of biodiversity in this model.

Proposition 1. The insurance value V (v) of biodiversity is given by

(16) V (v) = − ρ σs(v) σs
′(v) > 0.

From this equation it is apparent that the insurance value of bio-
diversity has an objective and a subjective dimension. The objective
dimension is captured by the sensitivity of the standard deviation of
ecosystem services to changes in biodiversity, σs and σs

′; the subjec-
tive dimension is captured by the ecosystem manager’s degree of risk
aversion, ρ. The insurance value V increases

• with the degree ρ of the ecosystem manager’s risk aversion and

• with the sensitivity of the standard deviation of ecosystem services
to changes in biodiversity, σs and |σ2

s
′|.

As a function of biodiversity v, the insurance value V (v) decreases,
Figure 4: as biodiversity becomes more abundant (scarcer), its insur-
ance value decreases (increases).



THE INSURANCE VALUE OF BIODIVERSITY 105

4.3 The optimal level of biodiversity. In order to study how the ecosys-
tem manager will make use of the insurance function of biodiversity,
consider first the situation in which there is no financial insurance avail-
able. The ecosystem manager chooses a level of biodiversity v such as
to maximize his expected utility (10):

(17) max
v

U(v).

With no financial insurance available, income y is given by equation (5),
such that the mean income μy and the standard deviation of income
σy are given by equations (6) and (7). The following proposition states
the properties of the optimal solution to problem (17).

Proposition 2. (i) The optimal level of biodiversity v�, which solves
the ecosystem manager’s optimization problem (17), is characterized by
the necessary and sufficient condition

(18) μ′
s(v

�) + V (v�) = C ′(v�).

(ii) The higher the ecosystem manager’s degree of risk aversion ρ,
the higher the optimal level of biodiversity v�:

(19)
dv�

dρ
> 0.

Proof. See Appendix A.3.

Condition (18) states that the optimal level of biodiversity v� is cho-
sen such that the marginal benefits of biodiversity equal its marginal
costs. The marginal benefits here are composed of two additive compo-
nents: the marginal gain in the mean level of ecosystem service and the
insurance value V (v�) of biodiversity. Hence, the insurance value of bio-
diversity is a value component in addition to the usual value arguments
(such as direct or indirect use or non-use values, or existence values)
which hold in a world of certainty. It leads to choosing a higher level
of biodiversity than without taking the insurance value into account.

The second part of the proposition states that the higher the degree
of risk aversion ρ, the higher the optimal level of biodiversity v�. This
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is intuitively obvious, and confirms the idea that biodiversity is being
used by a risk averse ecosystem manager as a form of natural insurance.

4.4 The effect of financial insurance. Consider now the situation
in which there is financial insurance available. As an example, think
again of the orchard farmer, who crucially depends on the pollination
service provided by insects and who can manage his agro-ecosystem by
choosing the level of biodiversity, e.g., by setting aside land for hedges
and wetlands. As we have seen above, this farmer can manage his
income risk from the random level of ecosystem service by choosing
the level of biodiversity. On the other hand, the farmer may also have
access to commercial crop yield insurance. Hence, his risk management
now comprises two instruments. The ecosystem manager chooses a level
of biodiversity v and a fraction of financial insurance coverage a such
as to maximize his expected utility (10):

(20) max
v, a

U(v, a).

Income y is now given by

(21) y = s − C(v) − a(s − μs(v)) − δ

2
a2 σ2

s(v).

The first two components represent the benefits and costs of ecosys-
tem management, equation (5), the third component is the actuari-
ally fair insurance premium/indemnification benefit, equation (11), and
the fourth component are the real costs of financial insurance, equa-
tion (12). While the real costs of both ecosystem management and
financial insurance, i.e., the second and fourth component, are certain,
the benefits, i.e., the first and third component, are random. As a
result, the mean and standard deviation of income are given by

μy(v, a) = μs(v) − C(v) − δ

2
a2 σ2

s(v)(22)

and

σy(v, a) = (1 − a) σs(v).(23)

Since the actuarially fair insurance premium/indemnification benefit
corresponds to an expected payment of exactly zero, the mean income,
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equation (22), is given by the mean benefits of ecosystem service minus
the real costs of ecosystem management and financial insurance. The
standard deviation of income, equation (23), is given by the standard
deviation of ecosystem service, reduced by a factor of 0 ≤ (1 − a) ≤ 1.
This should be compared to the case without financial insurance,
where the standard deviation of income is given by the full standard
deviation of ecosystem service, equation (7). Equation (23) expresses
the fact that the ecosystem manager can reduce the standard deviation
of his income, besides by increasing the level of biodiversity v and
thus lowering σs(v), by increasing the fraction a of financial insurance
coverage. In the extreme, with full coverage by financial insurance,
a = 1, the standard deviation of income vanishes. With (22) and (23),
the expected utility (10) is given by

(24) U(v, a) = μs(v) − C(v) − δ

2
a2 σ2

s(v) − ρ

2
(1 − a)2σ2

s(v).

The following proposition states the properties of the optimal solution
to problem (20).

Proposition 3. (i) The optimal level of biodiversity v̂ and the
optimal fraction of financial insurance coverage â, which solve the
ecosystem manager’s optimization problem (20), are characterized by
the necessary and sufficient conditions

μ′
s(v̂) +

δ

ρ + δ
V (v̂) = C ′(v̂)(25)

and

â =
ρ

ρ + δ
.(26)

(ii) The higher the real costs of financial insurance, as measured by
δ, the lower the optimal fraction â of coverage by financial insurance
and the higher the optimal level v̂ of biodiversity:

(27)
dâ

dδ
< 0 and

dv̂

dδ
> 0.
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(iii) A risk averse ecosystem manager chooses

• full coverage by financial insurance, â = 1, if δ = 0,

• partial coverage by financial insurance, 0 < â < 1, if 0 < δ < +∞,
and

• no coverage by financial insurance, â → 0, if δ → +∞.

(iv) A risk averse ecosystem manager chooses v̂ < v�.

Proof. See Appendix A.4.

The optimal allocation of biodiversity v̂ and financial insurance cov-
erage â is characterized by conditions (25) and (26). Condition (25)
states, similarly to condition (18) in the absence of financial insurance,
that the optimal level of biodiversity v̂ is chosen such that the marginal
benefits of biodiversity equal its marginal costs. The marginal benefits,
again, are composed of two additive components: the marginal gain in
the mean level of ecosystem service and the natural insurance value
V (v̂) of biodiversity, which is, however, not fully taken into account
but only to a fraction δ/(ρ + δ) < 1. That is, biodiversity’s natural
insurance function is only partly taken into account when determining
the optimal allocation.

The reason is that, of course, part of the income risk is now covered
by financial insurance. Condition (26) specifies the optimal level of
financial insurance coverage. It is obvious that â and the factor in front
of V (v̂) in condition (25) add up to one. This means, biodiversity as the
natural form of insurance and financial insurance together provide the
optimal coverage of income risk.24 Indeed, the two forms of insurance
are substitutes: whatever part of the risk is not covered by biodiversity
is covered by financial insurance. And what part of the risk is covered
by financial insurance is determined by the real costs of financial
insurance. Part (ii) of the proposition details this result: the higher
the real costs of financial insurance, i.e., costs over and above the
actuarially fair risk premium, the lower is the fraction of income risk
covered by financial insurance and the higher is the fraction covered by
the natural insurance, i.e., biodiversity.

Part (iii) of the proposition describes this in more detail. A risk
averse ecosystem manager, ρ > 0, chooses full coverage by financial
insurance, â = 1, if it is available at actuarially fair conditions, δ = 0;
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he chooses only partial coverage by financial insurance, 0 < â < 1,
if financial insurance comes at additional costs over and above the
actuarially fair risk premium, 0 < δ < +∞; and he chooses no
coverage by financial insurance, â → 0, if financial insurance becomes
infinitely costly, δ → +∞. These three cases imply, respectively, that
the fraction of biodiversity’s insurance value V (v̂) which is taken into
account according to condition (25), which is also the fraction of income
risk covered by the natural insurance of biodiversity, is zero if financial
insurance is available at actuarially fair conditions; it is in between
zero and one if financial insurance is available at actuarially unfair
conditions; and it goes to one for infinitely unfair financial insurance.

Part (iv) of the proposition states that, in any case, a risk averse
ecosystem manager chooses a lower level of biodiversity if financial
insurance is available compared to a situation where no financial in-
surance is available: v̂ < v�. That is, financial insurance crowds out
biodiversity as the natural from of insurance.

5. Discussion. Although the results have been derived from a
very simple and specific model, they are robust to a fair amount
of generalization. For instance, while the choice of the preference
representation (9) served to obtain simple closed-form solutions, all
results thus obtained are qualitatively robust to generalizations to
expected utility functions of the type U(μy, σ2

y) with ∂U/∂μy > 0
and ∂U/∂σ2

y < 0. Also, while the specific form of financial insurance
contract assumed here, subsection 3.3, served to obtain simple closed-
form solutions, all results thus obtained are qualitatively robust to
generalizations to more general financial insurance contracts with an
actuarially fair insurance premium plus a transaction costs/profit mark-
up on top (Baumgärtner and Quaas [2005]). And while I have assumed
for simplicity that the level of biodiversity is the only determinant of the
statistical distribution of the ecosystem service, equations (1), (2), one
could easily generalize the analysis so that the stochastic production of
the ecosystem service depends also on inputs other than biodiversity,
say labor, capital, fertilizer or chemical pest control. This could be
formalized with the help of a Just-Pope production function (Just and
Pope [1978, 1979]), which is well suited for mean-variance analysis of
stochastic production and would not qualitatively alter the basic results
about the role of biodiversity for income risk.
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Of particular importance are Assumptions (1), (2) and (3) about the
benefits and costs of biodiversity. While Assumptions (1) and (2) rep-
resent the best available ecological knowledge and describe a relevant
problem, it is an interesting question whether these assumptions are
actually necessary in order to arrive at the main result, i.e., biodiver-
sity’s insurance value, or whether this result holds under more general
conditions. It turns out that the crucial assumption is σ′

s < 0, while
μ′

s > 0 is not necessary. If biodiversity did depress the mean level
of ecosystem services, μ′

s < 0, then this could be considered as costs
of biodiversity and could be included in the function C(v). This as-
sumption would therefore not lead to a different result. If, however,
biodiversity did increase the variance of ecosystem services, σ′

s > 0,
then it would obviously not have any insurance value. Clearly, this
would fundamentally alter the main results of the paper. As for the
assumption on second derivatives (μ′

s ≤ 0, σ′
s ≥ 0, C ′ ≥ 0), their role is

mainly technical, making sure that second order conditions are fulfilled
and that one has an interior solution. Without these assumptions, the
main results would not change fundamentally but would require a more
elaborate formulation and proof of results.

So, the crucial assumptions which ultimately limit the generality of
results are the following:

• The ecosystem manager is risk averse and maximizes his expected
utility from an uncertain income which is determined by the random
level of some ecosystem service.

• The level of biodiversity determines the probability distribution
of the ecosystem service and, thus, of income. Taking into account
the (direct or opportunity) costs of biodiversity, there is a positive
correlation between expected income and standard deviation of income
in the relevant range of feasible income distributions.

• A financial insurance contract specifies only the state dependent
redemption payment and the corresponding risk premium. In particu-
lar, it is not explicitly contingent on the particular level of biodiversity
chosen by the ecosystem manager.25

• Both insurant and insurance company have the same ex ante
knowledge about the probability distribution of ecosystem services.
Both can observe ex post the actual state of nature.
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While these assumptions limit the generality of the results obtained
here, they describe, in a very stylized way, a realistic scenario of
managing stochastic ecosystems under uncertainty for the ecosystem
services they provide. Hence, this analysis yields relevant insights into
the issue.

6. Conclusion. I have presented a conceptual ecological-economic
model that combines (i) ecological results about the relationships be-
tween biodiversity, ecosystem functioning, and the provision of ecosys-
tem services with (ii) economic methods to study decision-making un-
der uncertainty. In this framework I have (1) determined the insurance
value of biodiversity, (2) studied the optimal allocation of funds in the
trade-off between investing into biodiversity protection and the pur-
chase of financial insurance, and (3) analyzed the effect of different
institutional settings in the market for financial insurance on biodiver-
sity protection. The focus was on how to model the ecology-economy
interface. Relevant economic and policy questions that arise from this
view on biodiversity, e.g., the public good character of the problem, the
dynamics of the problem or implications for environmental and devel-
opment policies, are discussed in more detail elsewhere (Baumgärtner
and Quaas [2005], Quaas and Baumgärtner [2005], Quaas et al. [2004]).

The conclusion from this analysis is that biodiversity can be inter-
preted as a form of natural insurance for risk averse ecosystem man-
agers against the over- or under-provision with ecosystem services, such
as biomass production, control of water run-off, pollination, control of
pests and diseases, nitrogen fixation, soil regeneration, etc. Thus, bio-
diversity has an insurance value, which is a value component in addition
to the usual value arguments (such as direct or indirect use or non-use
values, or existence values) holding in a world of certainty. This insur-
ance value should be taken into account when deciding upon how much
to invest into biodiversity protection. It leads to choosing a higher level
of biodiversity than without taking the insurance value into account,
with a higher degree of risk aversion leading to a higher optimal level of
biodiversity. As far as the insurance function is concerned, biodiversity
and financial insurance against income risk, e.g., crop yield insurance,
may be seen as substitutes. If financial insurance is available, a risk
averse ecosystem manager, say, a farmer, will partially or fully substi-
tute biodiversity’s insurance function by financial insurance, with the
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extent of substitution depending on the costs of financial insurance.
Hence, the availability, and exact institutional design, of financial in-
surance influence the level of biodiversity protection.
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Appendix

A.1. Expected utility function (10). With

(A.1) f(y) =
1√
2πσ2

y

e−(y−μy)2/(2σ2
y)

as the probability density function of the normal distribution of income
y with mean μy and variance σ2

y, the von (Neumann-Morgenstern)
expected utility from the (Bernoulli) utility function (9) is

(A.2) Ũ = E [u(y)] = −
∫

e−ρ yf(y) dy = − e−ρ [μy−(ρ/2) σ2
y].

Using a simple monotonic transformation of Ũ , one obtains the ex-
pected utility function U , equation (10).

A.2 Risk premium (14). The risk premium R has been defined in
equation (13) as

(A.3) u (E [y] − R) = E [u(y)] .
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With the Bernoulli utility function (9) and E [y] = μy, the left-hand
side of this equation is given by

(A.4) u (E [y] − R) = − e−ρ [μy−R],

and the right-hand side is given by equation (A.2). Hence, we have

(A.5) − e−ρ [μy−R] = − e−ρ [μy−(ρ/2) σ2
y].

Rearranging, and observing that σ2
y = σ2

s , equation (7), yields the result
stated in equation (14).

A.3 Proof of Proposition 2. ad (i). In Problem 17, the objective
function to be maximized over v is

(A.6) U(v) = μs(v) − C(v) − ρ

2
σ2

s(v),

such that the first order condition for a solution v� is

(A.7) μ′
s(v

�) − C ′(v�) − ρ σs(v�) σ′
s(v

�) = 0.

Observing that −ρ σs(v�) σ′
s(v�) = V (v�), equation (16) yields equa-

tion (18). With Assumptions (1), (2) and (3) about the curvature of
these functions, the second order condition for a maximum,

(A.8) μ′′
s (v�) − C ′′(v�) − ρ (σ′

s(v
�))2 − ρ σs(v�) σ′′

s (v�) < 0,

is satisfied, such that the necessary first order condition is also suffi-
cient.

ad (ii). The total derivative of first order condition (18) with respect
to ρ is

(A.9) μ′′
s

dv�

dρ
− C ′′ dv�

dρ
+ V ′ dv�

dρ
− σsσ

′
s = 0.

This can be rearranged into

(A.10)
dv�

dρ
=

σs σ′
s

μ′′
s − C ′′ + V ′ > 0,
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which is strictly positive due to Assumptions (1), (2), (3) and V ′ < 0,
Proposition 1.

A.4 Proof of Proposition 3. ad (i). In Problem (20), the objective
function to be maximized over v and a is

(A.11) U(v, a) = μs(v) − C(v) − δ

2
a2 σ2

s(v) − ρ

2
(1 − a)2 σ2

s(v) ,

such that the first order conditions for a solution (v̂, â) are

Uv(v̂, â) = μ′
s(v̂) − C ′(v̂) − δâ2σs(v̂)σ′

s(v̂) − ρ(1−â)2σs(v̂)σ′
s(v̂) = 0,

(A.12)

Ua(v̂, â) = − δâσ2
s(v̂) + ρ(1 − â)σ2

s(v̂) = 0.

(A.13)

As σ2
s(v) > 0 for all v, Condition (A.13) can be solved to yield

(A.14) â =
ρ

ρ + δ
,

which is the result stated in the proposition, equation (26). This can
be inserted into Condition (A.12), which yields, after rearranging,

(A.15) μ′
s(v̂) +

δ

ρ + δ
(−ρ σs(v̂) σ′

s(v̂)) = C ′(v̂).

Observing that −ρ σs(v̂) σ′
s(v̂) = V (v̂), equation (16) yields equa-

tion (25). As for the second order condition, note that

(A.16) Uvv(v̂, â) = μ′′
s (v̂) − C ′′(v̂) − δ â2 (σ′

s(v̂))2 − δ â σs(v̂) σ′′
s (v̂)

− ρ (1 − â)2 (σ′
s(v̂))2 − ρ (1 − â)2 σs(v̂) σ′′

s (v̂) < 0,

(A.17) Uaa(v̂, â) = − (δ + ρ) σ2
s(v̂) < 0,

(A.18) Uva(v̂, â) = − 2δâ σs(v̂) σp
s(v̂) + 2ρ(1 − â) σs(v̂) σ′

s(v̂) = 0,

where the last equality follows from using first order condition (A.14).
Hence, UvvUaa − U2

va > 0, so that the second order condition for a
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maximum is satisfied and the necessary first order conditions are also
sufficient.

ad (ii). The total derivative of first order condition (25) with respect
to δ is

(A.19) μ′′
s

dv̂

dδ
+

ρ

(ρ + δ)2
V +

δ

ρ + δ
V ′ dv̂

dδ
− C ′′ dv̂

dδ
= 0,

which can be rearranged into

(A.20)
dv̂

dδ
= − ρ/(ρ + δ)2V

μ′′
s + δ/(ρ + δ)V ′ − C ′′ > 0,

which is strictly positive due to Assumptions (1), (3) and V ′ < 0,
Proposition 1. The result about dâ/dδ follows immediately from
Condition (26).

Part (iii) of the proposition follows immediately from Condition (26).

ad (iv). Compare Conditions (18) and (25) for v� and v̂, respectively,
in a slightly rearranged version:

μ′
s(v

�) − C ′(v�) = −V (v�),(A.21)

μ′
s(v̂) − C ′(v̂) =

δ

ρ + δ
(−V (v�)) .(A.22)

From Assumptions (1) and (3) it follows that μ′
s(v) − C ′(v) is a de-

creasing function of v, while it follows from Proposition 1 that −V (v)
is an increasing function of v, so that v� and v̂ are determined by
the intersection of the decreasing curve representing the left-hand side
and the increasing curve representing the right-hand side of Condi-
tions (A.21) and (A.22) respectively. The difference between these two
conditions is that for every v the function on the right-hand side of Con-
dition (A.22) yields smaller values than the one in Condition (A.21), as
0 < δ/(ρ+δ) < 1, so that the intersection determining the optimal v in
Condition (A.22) is further to the left than the one in Condition (A.21),
i.e, v̂ < v�.

ENDNOTES

1. In this respect, biodiversity plays a similar role for farmers as other risk
changing production factors, such as, e.g., nitrogen fertilizer or pesticides (Horowitz
and Lichtenberg [1993, 1994a, b]).
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2. This procedure has been inspired by Crocker and Shogren [1999, 2001, 2003]
and Shogren and Crocker [1999]. It is also employed by Baumgärtner and Quaas
[2005] and Quaas and Baumgärtner [2005].

3. The question of how to construct an aggregate and encompassing measure of
biodiversity has been extensively discussed and is still subject to on-going research
(Baumgärtner [2004], Crozier [1992], Magurran [1988], May [1990], Nehring and
Puppe [2004], Peet [1974], Purvis and Hector [2000], Vane-Wright [1991], Weitzman
[1992, 1998], Whittaker [1972]).

4. The article by Hooper et al. [2005] is a committee report commissioned by the
Governing Board of the Ecological Society of America. Some of its authors have
previously been on opposite sides of the debate. This report surveys the relevant
literature, identifies a consensus of current knowledge as well as open questions, and
can be taken to represent the best currently available ecological knowledge about
biodiversity and ecosystem functioning.

5. This discussion is compiled from the report of Hooper et al. [2005, Sections
II.A and II.B], with large parts being original quotes from this report. For a more
detailed and encompassing discussion see Hooper et al. [2005].

6. The patterns depend on the degree of dominance of the species lost or gained,
the strength of their interactions with other species, the order in which species
are lost, the functional traits of both the species lost and those remaining, and
the relative amount of biotic and abiotic control over process rates (Lawton [1994],
Naeem [1998], Naeem et al. [1995], Sala et al. [1996], Vitousek and Hooper [1993]).

7. There is still disagreement over whether sampling effects are relevant to natural
ecosystems, or whether they only occur in artificially assembled systems (Huston
[1997], Loreau [2000], Mouquet et al. [2002], Schläpfer et al. [2005], Tilman et al.
[1997b], Wardle [1999]).

8. Much of the experimental work has focused on the effect of plant diversity
on primary production and nutrient retention. Recently, evidence for ecosystem
services other than biomass production and from ecosystems other than grasslands
has begun to accumulate as well. Important insights come from research on
intercropping and agroforestry (Ewel [1986], Fridley [2001], Harper [1977], Hector et
al. [2002], Loreau [1998b], Smale et al. [1998], Trenbath [1974], Vandermeer [1990],
Zhu et al. [2000]).

9. Identifying the exact mechanisms by which experimental manipulation of
species leads to increased levels of ecosystem processes has led to substantial debate
(Aarssen [1997], Garnier et al. [1997], Hector et al. [2000], Huston [1997], Huston
and McBride [2002], Huston et al. [2000], Schmid et al. [2002], van der Heijden et al.
[1999], Wardle [1999]), as many experiments were originally designed to test general
patterns, rather than to test the underlying mechanisms.

10. The simulated model systems in the analysis of May [1972, 1974] were
randomly constructed by putting together a given number of system elements
(species) and, in particular, linking them by randomly assigned interaction strengths
which were taken from a uniform distribution over all possible interaction strengths.
This is in contrast to recent empirical evidence that in real ecosystems the vast
majority of pairwise interactions are weak (Paine [1992], Wootton [1997], McCann
et al. [1998]).

11. In such cases, there is compensation among species: as some species do
worse, others do better due to differences in their functional traits. As a result,
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unstable individual populations stabilize properties of the ecosystem as a whole.
Hence, instability of the community composition is no contradiction to, but may
actually support stability of ecosystem processes (Ernest and Brown [2001], Hughes
and Roughgarden [1998], Ives et al. [1999], Landsberg [1999], Lehman and Tilman
[2000], McNaughton [1977], Tilman [1996, 1999], Walker et al. [1999]).

12. This is similar to the effect of diversifying a portfolio of financial assets, e.g.,
stocks.

13. It is generally acknowledged that the underlying assumptions of the math-
ematical models as to these parameters need further investigation and more ex-
perimental confirmation. Also, the role of the stability measures used and other
mechanisms built into the models (such as, e.g., overyielding) need further clarifi-
cation.

14. See Endnote 3.

15. According to the discussion in the previous section, ‘biodiversity’ could in
many instances simply be measured by the number of different species (‘species
richness’). However, the discussion in the previous section also suggests that in
some instances it should be measured by a more sophisticated index which takes
into account the functional traits and relative abundances of different species as
well as their interactions (see Endnote 3).

16. According to the well established species-area relationships, the level of
biodiversity v increases with the area l of land as v ∼ lz, where z, with 0 < z < 1, is
a characteristic constant for the type of ecosystem (MacArthur and Wilson [1967],
Rosenzweig [1995], Gaston [2000]). Assuming constant per-hectare costs of land,
this leads to a strictly convex cost function.

17. Of course, it is a major simplification to assume that one can directly choose a
certain level of biodiversity. Actually, one would choose some instrumental variable,
such as area of protected land, or investment in some species protection/recovery
plan, which then results in a certain level of biodiversity.

18. While risk-aversion is a natural and standard assumption for farm households
(Besley [1995], Dasgupta [1993, Chapter 8]), it appears as an induced property in
the behavior of (farm) companies which are fundamentally risk neutral but act as if
they were risk averse when facing, e.g., external financing constraints or bankruptcy
costs (Caillaud et al. [2000], Mayers and Smith [1990]).

19. This stylized insurance institution is a special case of the one studied by
Baumgärtner and Quaas [2005].

20. This benefit/premium-scheme is actuarially fair, because the insurance
company has an expected net payment stream of E[a(s − s̄)] = 0. To the insurant,
this actuarially fair benefit/premium-scheme does not come at any real costs, as
E[a(s − s̄)] = 0. It is fully equivalent to the traditional model of insurance, e.g.,
Ehrlich and Becker [1972, p. 627], where losses compared with the maximum income
are insured against and one pays a constant insurance premium irrespective of actual
income.

21. Since the actuarially fair risk premium does not cause any expected pay-
off/costs to the insurant, only the price component over and above the actuarially
fair risk premium (the so-called ‘loading’ of the premium) constitutes real costs of
insurance to the insurant (Ehrlich and Becker [1972, pp. 626 627]).
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22. By equation (13), E[y]−R is the certainty equivalent of lottery v, as it yields
the expected utility E [u(y)]. According to equations (3) and (5), y ∈ Y with Y as an
interval of R, and according to equation (9), u is continuous and strictly increasing,
so that a risk premium R uniquely exists for every lottery v (Kreps [1990, p. 84]).

23. In the simple model employed here, the risk premium is equivalent to the so-
called ‘option price’ of risk reduction, that is, the amount of money that a decision
maker would be willing to pay for getting the expected pay-off from the lottery,
E[y], for sure instead of playing the risky lottery with random pay-off y.

24. Note that this does not necessarily mean that in the optimal allocation there
is no more income risk, i.e., σ2

y(v̂, â) = 0. It only means that the overall amount of
income variance that the decision maker wishes to avoid in the optimum is covered
by both natural and financial insurance. This may still leave the decision maker
with some positive income risk in the optimum, i.e., σ2

y(v̂, â) > 0.

25. This gives rise to what is known in the insurance economics literature as
‘moral hazard’ (Kreps [1990]). As long as the behavior of the economic agent (here:
the level of biodiversity chosen by the ecosystem manager) cannot be observed by
the insurance company, but only the resulting outcome can be observed (here: the
provision of some ecosystem service), the existence of insurance will induce the
insurant to choose a riskier behavior than if insurance was not available. Moral
hazard is a problem for many insurance markets, e.g., health insurance or car
insurance, and has been identified as a major reason for the absence of private
insurance markets for most agricultural risks (Chambers [1989]). Because of the
moral hazard problem, most insurance contracts intentionally do not allow for full
coverage at actuarially fair premiums but contain deductibles or upper limits in
either the degree of coverage or the amount to be insured. Other insurance policies
try to include a specification of the insurant’s behavior (or observable proxies
thereof) into the contract. These mechanisms serve to diminish the moral hazard
problem, yet they cannot eliminate it completely.
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K. McCann, A. Hastings and G.R. Huxel [1998], Weak Trophic Interactions and
the Balance of Nature, Nature 395, 794 798.

J. McGrady-Steed, P.M. Harris and P.J. Morin [1997], Biodiversity Regulates
Ecosystem Predictability, Nature 390, 162 164.

S.J. McNaughton [1977], Diversity and Stability of Ecological Communities: A
Comment on the Role of Empiricism in Ecology, The Amer. Naturalist 111,
515 525.

S.J. McNaughton [1985], Ecology of a Grazing Ecosystem: The Serengeti, Ecol.
Monogr. 55, 259 294.

S.J. McNaughton [1993], Biodiversity and Function of Grazing Ecosystems, in
Biodiversity and Ecosystem Function (E.-D. Schulze and H.A. Mooney, eds.),
Springer, Heidelberg, pp. 361 383.

Millennium Ecosystem Assessment [2005], Ecosystems and Human Well-Being:
Synthesis Report, Island Press, Washington, DC.

N. Mouquet, J.L. Moore and M. Loreau [2002], Plant Species Richness and
Community Productivity : Why the Mechanism that Promotes Coexistence Matters,
Ecol. Letters 5, 56 65.

S. Naeem [1998], Species Redundancy and Ecosystem Reliability, Conserv. Biol.
12, 39 45.

S. Naeem [2002], Ecosystem Consequences of Biodiversity Loss: The Evolution of
a Paradigm, Ecol. 83, 1537 1552.

S. Naeem and S. Li [1997], Biodiversity Enhances Reliability, Nature 390,
507 509.

S. Naeem, L.J. Thompson, S.P. Lawler, J.H. Lawton and R.M. Woodfin [1995],
Empirical Evidence that Declining Species Diversity May Alter the Performance of
Terrestrial Ecosystems, Philos. Trans. Royal Soc. London 347, 249 262.

K. Nehring and C. Puppe [2004], Modelling Phylogenetic Diversity, Resource
Energy Econ. 26, 205 235.

P.A. Niklaus, E. Kandeler, P.W. Leadley, B. Schmid, D. Tscherko and C. Körner
[2001], A Link between Plant Diversity, Elevated CO2 and Soil Nitrate, Oecologia
127, 540 548.

E. Odum [1953], Fundamentals of Ecology, Saunders, Philadelphia.

S.W. Pacala and D.H. Deutschman [1995], Details that Matter: The Spatial
Distribution of Individual Trees Maintains Forest Ecosystem Function, Oikos 74,
357 365.

R.T. Paine [1992], Food-Web Analysis through Field Measurements of Per Capita
Interaction Strengths, Nature 355, 73 75.

R.K. Peet [1974], The Measurement of Species Diversity, Annual Rev. Ecol. Syst.
5, 285 307.

C. Perrings [1995], Biodiversity Conservation as Insurance, in The Economics and
Ecology of Biodiversity Decline. The Forces Driving Global Change (T.M. Swanson,
ed.), Cambridge Univ. Press, Cambridge, pp. 69 77.

O.L. Petchey, P.T. McPhearson, T.M. Casey and P.J. Morin [1999], Environmen-
tal Warming Alters Food-Web Structure and Ecosystem Function, Nature 402,
69 72.



THE INSURANCE VALUE OF BIODIVERSITY 125

G. Peterson, C.R. Allen and C.S. Holling [1998], Ecological Resilience, Biodiver-
sity and Scale, Ecosyst. 1, 6 18.

A.B. Pfisterer, J. Joshi, B. Schmid and M. Fischer [2004], Rapid Decay of
Diversity-Productivity Relationships after Invasion in Experimental Plant Com-
munities, Basic Appl. Ecol. 5, 5 14.

A.B. Pfisterer and B. Schmid [2002], Diversity-Dependent Production Can De-
crease the Stability of Ecosystem Functioning, Nature 416, 84 86.

S.L. Pimm [1984], The Complexity and Stability of Ecosystems, Nature 307,
321 326.

A. Purvis and A. Hector [2000], Getting the Measure of Biodiversity, Nature 405,
212 219.

J.W. Pratt [1964], Risk Aversion in the Small and in the Large, Econometrica
32, 122 136.
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